Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yong Liang ${ }^{\text {a }}$ and Wei Li ${ }^{\text {b }}$ *

${ }^{\text {a }}$ College of Life Sciences, South China Normal University, Guangzhou 510631, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, Hanshan Teachers' College, Chaozhou 521041, People's Republic of China

Correspondence e-mail: liwei1789@tom.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
R factor $=0.037$
$w R$ factor $=0.130$
Data-to-parameter ratio $=13.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Poly[bis(μ-3-pyridinecarboxylato- $\left.{ }^{3} N, O: O^{\prime}\right)$ cadmium(II)]

The title compound, $\left[\mathrm{Cd}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)_{2}\right]_{n}$, is a two-dimensional coordination polymer, which consists of $\mathrm{Cd}^{\mathrm{II}}$ atoms and bridging nicotinate anions. The Cd atom is coordinated in a highly distorted $\mathrm{CdO}_{4} \mathrm{~N}_{2}$ octahedron by two chelating carboxylate groups and two cis pyridyl groups.

Comment

3- and 4-pyridinecarboxylates and their derivatives are good bridging ligands in the construction of two- and threedimensional functional metal-organic frameworks (Evans \& Lin, 2002; Lu, 2003; Tong et al., 2003; Wang et al., 2003). The title complex, (I), was obtained unexpectedly in an attempt to prepare a bimetallic coordination network with nicotinic acid (3-pyridinecarboxylic acid).

(I)

The structure of (I) is a two-dimensional coordination network, which is parallel to the ($\overline{1} 01$) plane (Fig. 1). The $\mathrm{Cd}^{\mathrm{II}}$ atom, which is located in a general position, is coordinated by four O atoms from two chelating carboxylate groups and two pyridyl N atoms. The $\mathrm{Cd} 1-\mathrm{N}[2.316$ (5) and 2.321 (5) \AA] and $\mathrm{Cd} 1-\mathrm{O}$ [2.271 (4)-2.476 (4) Å] bond lengths are similar to those found in poly[$\left(\mu_{3}\right.$-nicotinato)(μ-nicotinato)cadmium(II)] $[\mathrm{Cd}-\mathrm{N}=2.310$ (5) and 2.321 (5) \AA, and $\mathrm{Cd}-\mathrm{O}=$ 2.270 (4) -2.640 (4) Å] (Evans \& Lin, 2001; Lu \& Kohler, 2002), those found in poly[tetrakis (μ-nicotinato- N, O, O^{\prime})-$\operatorname{bis}(\mu$-nicotinato- $N, O)$ tetraaquatricadmium(II)] $[\mathrm{Cd}-\mathrm{N}=$ 2.326 (5) and 2.395 (4) \AA, and $\mathrm{Cd}-\mathrm{O}=2.269$ (4)-2.539 (5) A] (Chen, 2003), and those in poly[bis(μ-nicotinato- $\left.N, O, O^{\prime}\right)$ aquacadmium(II)] [Cd-N 2.307 (2) and 2.353 (2) \AA, and $\mathrm{Cd}-\mathrm{O}=2.276$ (2)-2.639 (3) Å] (Clegg et al., 1995). The angular distortions of the coordination octahedron are caused

Received 25 April 2005
Accepted 9 May 2005
Online 14 May 2005

Figure 1
ORTEPII (Johnson, 1976) drawing of the extended two-dimensional layered structure of (I), with the atom-labeling scheme. Displacement ellipsoids are plotted at the 40% probability level. [Symmetry codes: (A) $x-\frac{1}{2}, \frac{1}{2}-y, z-\frac{1}{2} ;$ (B) $x, 1+y, z$.]

Perspective view of the molecular packing of (I).
by the chelate formation, the chelate bite angles $\mathrm{O} 1-\mathrm{Cd} 1-$ O 2 and $\mathrm{O} 3-\mathrm{Cd} 1-\mathrm{O} 4$ being $55.21(15)$ and $56.05(16)^{\circ}$, respectively.

The coordination structure of (I) is similar to that of poly[bis(μ-nicotinato)zinc(II)] (Evans \& Lin, 2001); however, their crystal packings are quite different. The former is monoclinic $P 2_{1} / n$, while the latter is tetragonal $P 4_{3} 2_{1} 2$. In (I), the extensive interlayer $\pi-\pi$ stackings between the pyridyl rings of the nicotinate ligands play an important role in consolidating their crystal architectures (Fig. 2). There are two kinds of $\pi-\pi$ stackings; one is face-to-face stacking interactions between the N1/C2-C6 pyridyl ring and its symmetryrelated counterpart at $(2-x,-1-y, 1-z)$, the distance between the centroids being $3.644 \AA$; the other type is offset π stacking interactions between the pyridyl $\mathrm{N} 2 / \mathrm{C} 8-\mathrm{C} 12$ ring and its symmetry-related counterpart at $(2-x,-y, 2-z)$,
with an interplanar distance of $3.546 \AA$ (the center-to-center distance is $4.307 \AA$).

Experimental

To a methanol-water solution ($4 / 1 \mathrm{v} / \mathrm{v}, 10 \mathrm{ml}$) of cadmium nitrate tetrahydrate $(0.154 \mathrm{~g}, 0.5 \mathrm{mmol})$ and europium(III) nitrate hexahydrate $(0.112 \mathrm{~g}, 0.25 \mathrm{mmol})$, a solution of nicotinic acid $(0.123 \mathrm{~g}$, $1.0 \mathrm{mmol})$ in $\mathrm{MeOH}(5 \mathrm{ml})$ was added slowly with stirring for 30 min at 333 K . The solution was adjusted to $\mathrm{pH}>4$ by addition of dilute NaOH solution. Colorless block-shaped crystals of (I) were deposited within two weeks in ca 60% yield.

Crystal data

$\left[\mathrm{Zn}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)_{2}\right]$
$M_{r}=356.60$
Monoclinic, $P 2_{1} / n$
$a=12.454(5) \AA$
$b=7.807(2) \AA$
$c=12.825(5) \AA$
$\beta=105.269(5)^{\circ}$
$V=1203.0(7) \AA^{3}$
$Z=4$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Blessing, 1995)
$T_{\min }=0.696, T_{\max }=0.803$
5157 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.130$
$S=1.21$
2278 reflections
172 parameters

H -atom parameters constrained
$D_{x}=1.969 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 4560 reflections
$\theta=3.1-26.0^{\circ}$
$\mu=1.83 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Polyhedron, colorless
$0.22 \times 0.16 \times 0.12 \mathrm{~mm}$

2278 independent reflections
2123 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.035$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-15 \rightarrow 15$
$k=-9 \rightarrow 9$
$l=-9 \rightarrow 15$
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+5.4598 P\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=1.03 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.68 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cd} 1-\mathrm{O} 1$	$2.271(4)$	$\mathrm{Cd} 1-\mathrm{O} 3$	$2.324(4)$
$\mathrm{Cd} 1-\mathrm{N} 2^{\mathrm{i}}$	$2.316(5)$	$\mathrm{Cd} 1-\mathrm{O} 4$	$2.414(5)$
$\mathrm{Cd} 1-\mathrm{N} 1^{\mathrm{ii}}$	$2.321(5)$	$\mathrm{Cd} 1-\mathrm{O} 2$	$2.476(4)$
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{N} 2^{\mathrm{i}}$	$117.64(18)$	$\mathrm{N} 1^{\mathrm{ii}}-\mathrm{Cd} 1-\mathrm{O} 4$	$130.15(16)$
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{N} 1^{\mathrm{ii}}$	$127.80(16)$	$\mathrm{O} 3-\mathrm{Cd} 1-\mathrm{O} 4$	$56.05(16)$
$\mathrm{N} 2^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{N} 1^{\mathrm{ii}}$	$90.39(18)$	$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O} 2$	$55.21(15)$
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O} 3$	$102.28(19)$	$\mathrm{N} 2^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{O} 2$	$90.25(17)$
$\mathrm{N} 2^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{O} 3$	$127.78(18)$	$\mathrm{N} 1^{\mathrm{ii}}-\mathrm{Cd} 1-\mathrm{O} 2$	$84.00(15)$
$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{O} 3$	$90.32(18)$	$\mathrm{O} 3-\mathrm{Cd} 1-\mathrm{O} 2$	$141.66(18)$
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O} 4$	$97.13(16)$	$\mathrm{O} 4-\mathrm{Cd} 1-\mathrm{O} 2$	$145.50(16)$
$\mathrm{N} 2^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{O} 4$	$85.42(16)$		

Symmetry codes: (i) $x-\frac{1}{2}, \frac{1}{2}-y, z-\frac{1}{2}$; (ii) $x, 1+y, z$.
The H atoms were included in geometrically calculated positions and constrained to ride at a distance of $0.93 \AA$ from their parent C atoms with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The highest peak is located near the mid-point of C 3 and O 1 . It is not geometrically reasonable to be assigned as the aromatic proton of C3.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

metal-organic papers

SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXL97.

We thank the Foundation for the Item of Education Office of Guangdong Province (No. z03065) for generously supporting this work.

References

Blessing, R. (1995). Acta Cryst. A51, 33-38.
Bruker (1998). SMART (Version 5.0) and SHELXTL (Version 5.1). Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT. Version 6.0. Bruker AXS Inc., Madison, Wisconsin, USA.

Chen, H.-J. (2003). Acta Cryst. C59, m371-m373.
Clegg, W., Cressey, J. T., McCamley, A. \& Straughan, B. P. (1995). Acta Cryst. C51, 234-235.
Evans, O. R. \& Lin, W. (2001). Chem. Mater. 13, 3009-3014.
Evans, O. R. \& Lin, W. (2002). Acc. Chem. Res. 35, 511-522.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5139. Oak Ridge National Laboratory, Tennessee, USA.
Lu, J. Y. (2003). Coord. Chem. Rev. 246, 327-347.
Lu, J. Y. \& Kohler, E. E. (2002). Inorg. Chem. Commun. 5, 196-199
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Tong, M.-L., Chen, X.-M. \& Batten, S. R. (2003). J. Am. Chem. Soc. 125, 16170-16171.
Wang, R., Hong, M., Luo, J., Cao, R. \& Weng, J. (2003). Chem. Commun. pp. 1018-1019.

